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On generalized Gauss–Radau projections and optimal
error estimates of upwind-biased DG methods for the
linear advection equation on special simplex meshes

Zheng Sun∗ Yulong Xing†

Abstract: Generalized Gauss–Radau (GGR) projections are global projection opera-
tors that are widely used for the error analysis of discontinuous Galerkin (DG) methods
with generalized numerical fluxes. In previous work, GGR projections were constructed for
Cartesian meshes and analyzed through an algebraic approach. In this paper, we first present
an alternative energy approach for analyzing the one-dimensional GGR projection, which
does not require assembling and explicitly solving a global system over the entire computa-
tional domain as that in the algebraic approach. We then generalize this energy argument
to construct a global projection operator on special simplex meshes in multidimensions sat-
isfying the so-called flow condition. With this projection, optimal error estimates are proved
for upwind-biased DG methods for the linear advection equation on these meshes, which
generalizes the error analysis for the purely upwind case in [9] in a time-dependent setting.

1 Introduction

In this paper, we study an energy-based method for the construction and analysis of
global projection operators and use them to analyze optimal error estimates of the upwind-
biased discontinuous Galerkin (DG) methods for linear advection equations on special sim-
plex meshes in multidimensions satisfying the so-called flow condition. This energy approach
is based by the techniques developed in [36]. In contrast to the algebraic-type argument in
previous work, it avoids the assembly and solution of a global system in the analysis and
can be easily extended to unstructured meshes in multidimensions. To understand the ap-
plicability of the method, we first revisit the work of [26, 6] and use this energy approach to
reproduce existing results on generalized Gauss–Radau (GGR) projections in one dimension.
Then we generalize our argument, without much complication, to construct a global projec-
tion operator on multidimensional simplex meshes satisfying the flow condition. This global
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projection is a generalization of the local projection in [10] and can be used to acquire op-
timal error estimates of the upwind-biased DG method for the linear advection equation on
these special meshes. Despite our analysis concerns a time-dependent problem rather than a
steady state problem, the optimal error estimate in this paper is essentially a generalization
of the results in [9] from the purely upwind case to the upwind-biased case.

The DG methods are a class of finite element methods using discontinuous piecewise
polynomial spaces. They were first introduced by Reed and Hill in [28] for solving the trans-
port equation and were then further developed in the past decades for different applications
[1, 15, 30, 14]. The DG methods come with many advantages and have now become one
of the main-stream numerical methods for solving partial differential equations arising from
science and engineering.

For the DG methods, the so-called numerical fluxes play a central role in the algorithm
design and have a crucial effect on the stability and accuracy of the schemes. In the ear-
lier literature, classical numerical fluxes, such as the upwind fluxes (or more generally, the
monotone fluxes) for hyperbolic equations and the alternating fluxes for equations with high-
order derivatives, are usually considered. Recently, there is a rising interest in analyzing DG
schemes with generalized numerical fluxes, such as the upwind-biased fluxes [26, 19, 22], the
generalized alternating fluxes [6, 7, 44, 41], the generalized Lax–Friedrichs fluxes [21], the
αβ-fluxes [5, 18, 36], etc. These numerical fluxes are perturbed from the classical numerical
fluxes with some adjustable parameters. The motivation for using the generalized fluxes is
mainly in two folds. Firstly, the parameters in the numerical fluxes may relate to the jump
dissipation in the stability estimates. One can make the numerical scheme more stable or less
dissipative by adjusting the parameters. In some cases, this will also improve the accuracy of
the numerical methods. Secondly, for some complex systems, the classical numerical fluxes,
such as the upwind fluxes, may not be easily determined. The generalized fluxes will provide
more flexibility in the algorithm design.

The error estimates of DG methods with generalized fluxes can be more involved than
the classical methods. It is known that the essential ingredient for proving error estimates
of the DG methods is to construct appropriate projection operators, see for example, [13,
12, 16, 23, 25, 35]. For the classical cases, these projections are typically locally-defined.
Their well-definedness and approximation properties can usually be proved by looking into
the solution of a local system on a single element. For example, the (locally-defined) Gauss–
Radau (GR) projection [13, 4] has been used for proving the optimal error estimates of the
upwind DG method and the local DG methods with alternating fluxes [30]. However, with
generalized fluxes, the required projection operator for optimal error estimates can be global,
coupling all mesh cells on the entire computational domain.

An important global projection for error analysis of the DG methods is the GGR projec-
tion, which recovers the GR projection in the special case. The GGR projection is introduced
by Meng et al. in [26] for optimal error estimates of the upwind-biased DG methods for the
linear advection equation. Their analysis is based on an algebraic approach motivated by
an earlier work by Bona et al. [2]. The key is to look into the difference between the GGR
projection and the GR projection, which is denoted by δ. The well-definedness and approxi-
mation property of the GGR projection can be implied by those of δ and the GR projection.
To prove the properties of δ, a global linear system is assembled and solved to obtain the
explicit formula of δ. The GGR projection on two-dimensional (2D) Cartesian meshes has
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also been studied in [26] following the similar idea.
Beyond the work of [26], the approximation estimate of the GGR projection is improved

by Cheng et al. in [6] and is used for the optimal error estimate of the local DG method with
generalized alternating fluxes for the convection-diffusion equations. After that, the GGR
projection along with its variants has been used for the optimal error estimates of the DG
method with upwind-biased fluxes for the linear advection equation with degenerate variable
coefficients [19, 22], with generalized local Lax–Friedrichs fluxes for 1D nonlinear scalar
conservation laws [21], with generalized numerical fluxes for the 1D nonlinear convection-
diffusion systems [42], with generalized numerical fluxes for the linearized KdV equations
[20], with generalized numerical fluxes for stochastic Maxwell equations with additive noise
[32], with generalized alternating fluxes for 2D nonlinear Schrödinger equations [41], etc. The
fully discrete error estimates using the GGR projection can also be found in the literature.
See, for example, [38, 37, 40]. We remark that due to the construction of the GGR projection,
these error estimates are mostly for Cartesian meshes in one and two dimensions.

Besides the GGR projection, recently in [36], Sun and Xing introduced another global
projection to prove the optimal error estimates of DG methods with generalized numerical
fluxes for wave equations on unstructured simplex meshes. In special cases, this global
projection retrieves the locally-defined HDG projection in [12]. The key step in constructing
this global projection is again to consider its difference δ from the HDG projection in [12].
However, instead of considering the algebraic system satisfied by δ, the authors used an
energy argument for the estimates: appropriate bilinear forms are constructed from the
conditions satisfied by δ and then the desired estimates can be deduced from the weak
coercivity of the bilinear form. This global projection is also used for the error analysis
of the DG methods for stochastic Maxwell equations with multiplicative noise in a recent
work [31]. We remark that the energy argument in [36] is different from the construction of
elliptic projections. Although they share similarities in terms of both using the coercivity
of certain bilinear form, the required coercivity in [36] is much weaker (usually only for the
jump seminorm) and is used to analyze the difference term δ — the argument still relies on
the existence and approximation properties of a local projection.

So far, we have seen two ways of extending a local projection to a global projection. See
Table 1.1. Their common argument is to consider the difference, δ, between the global and
the local projections. But then the analysis of δ proceeds differently: one is an algebraic
approach in the analysis of the GGR projection [26, 6], the other is an energy approach in
the analysis of the global projection in [36]. This paper is an effort to gain an improved
understanding of the energy approach for analyzing global projections. We wonder whether
it can be used to reproduce the existing results proved through the algebraic approach and
whether it can be used to construct new projections that could be less easy to handle by the
algebraic approach.

To this end, we start by reproducing existing one-dimensional (1D) results in [26, 6, 19]
in a different way. This part of the analysis is given in Section 2, in which we use the energy
approach to analyze the 1D GGR projection for the optimal error estimates of the upwind-
biased DG method. In Section 3, we study the generalization of the 1D GGR projection
to special simplex meshes in multidimensions, which leads to a novel global projection that
extends the local projection in [10, 9]. In [9], the authors studied the upwind DG scheme
for the steady state transport equation on special simplex meshes satisfying the so-called
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flow condition, which requires each mesh cell to have a unique outflow face that is contained
in an inflow face of the neighboring cells. See (3.3) and note the meshes can possibly be
unstructured. They used the local projection introduced in [10] to prove optimal error
estimates of the scheme. In this paper, we consider the time-dependent linear advection
equation and construct a global projection that generalizes the local projection in [10]. The
main idea is to use the weak coercivity of the DG discretization of the advection operator to
analyze the difference term δ. Note this is different from that in [36], where the argument
essentially relies on the bilinear form associated with the wave equation. With this novel
projection operator, we are able to extend the optimal error estimates of the purely upwind
DG schemes in [9] to the upwind-biased DG schemes on these special meshes.

Compared with the algebraic approach in the analysis of GGR projections in [26, 6], the
energy argument in [36] and this paper has the following advantages: firstly, the argument
is insensitive to the spatial dimension and one can prove the two- and three- dimensional
cases in one shot; secondly, since no matrix assembly is needed in the energy approach, the
argument can be easily used to construct global projections on unstructured meshes. How-
ever, we remark that with the energy approach, one may encounter difficulty in constructing
global projections with certain superconvergence properties. Hence it may not substitute
the algebraic approach in some cases. For example, we are not able to prove the properties
of the 2D GGR projection on Cartesian meshes with the energy approach. See Subsection
3.4 for further discussions.

The rest of the paper is organized as the following. In Section 2, we revisit the optimal
error estimates of the upwind-biased DG method for the linear advection equation in one
dimension. In particular, we use the energy approach to prove the well-definedness and
approximation property of the 1D GGR projection. See Subsection 2.3. In Section 3, we
extend the 1D GGR projection to 2D and 3D simplex meshes satisfying the flow condition
and apply it to prove the optimal error estimates of the upwind-biased DG method for linear
advection equations on these meshes. In Section 4, numerical tests are presented to validate
the error estimates. Finally, conclusions are given in Section 5.

Context Meshes Local projections Global projections Argument

Advection
1D GR [4, Corollary 3.13]

GGR [26, Lemma 2.6], [6, Lemma 3.2] Algebraic
GGR Lemma 2.1 Energy

2D Cartesian GR [13, Lemma 3.2] GGR [26, Lemma 3.3], [6, Lemma 3.3] Algebraic
Mulit-D simplex* [10, Lemma 3.1] Lemma 3.4 Energy

Wave
1D [5, Lemma 2.4] [36, Lemma 2.1] **
Mulit-D simplex HDG [12, Theorem 2.1] [36, Lemma 3.1] Energy

* Flow condition is required.

** Constructed with linear combinations of GGR projections. Not built from scratch.

Table 1.1: Local projections and their extensions as global projections.

2 One-dimensional case

In this section, we study the optimal error estimates of the 1D linear advection equation

ut + ux = 0, u = u(x, t), (x, t) ∈ Ω× (0, T ), Ω = (0, 1) ⊆ R (2.1)
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along with the 1D GGR projection. Both the periodic boundary condition u(0, t) = u(1, t)
and the inflow boundary condition u(0, t) = g(t) are considered.

2.1 Notations

Let T = {Ij}Nj=1 be a partition of the computational domain Ω, where the mesh cell
Ij = (xj−1/2, xj+1/2) has the length hj = xj+1/2 − xj−1/2 and h = max1≤j≤N hj. The finite
element space of the DG method is chosen as

Vh = {v ∈ L2(Ω) : v|Ij ∈ Pk (Ij) ,∀j = 1, · · · , N}. (2.2)

Here Pk(Ij) is the space spanned by polynomials on Ij of degree less than or equal to k.
Note that functions in Vh can be double-valued at cell interfaces. We denote by v±j+1/2 =

limε→0± v(xj+1/2 + ε) the left and right limits of v at xj+1/2. The notations

[v]j+ 1
2
= v+

j+ 1
2

− v−
j+ 1

2

and {v}(θ)
j+ 1

2

= (θv)−
j+ 1

2

+ (θ̃v)+
j+ 1

2

, with θ̃ = 1− θ (2.3)

are used for the jump and the weighted average of v across xj+1/2, respectively. Here θ =
{θj+1/2}Nj=1 is a given set of parameters that may vary with j. Given a function v, we use
the following convention for its trace outside of the domain at xN+1/2: when the periodic
boundary condition is considered, we have v+N+1/2 = v+1/2; when the inflow boundary condition

is considered, we have v+N+1/2 = 0. We also use

(w, v)Ij =

∫
Ij

wvdx, (w, v)Th =
N∑
j=1

(w, v)Ij ,

∥v∥L2(Ij) =
√
(v, v)Ij , ∥v∥L2(Th) =

√
(v, v)Th ,

(2.4)

for the inner products and norms. Let E+
h = {xj+1/2}Nj=1. For a function w that is single-

valued on E+
h , we define

∥w∥L2(E+
h )

=

√√√√ N∑
j=1

∣∣∣wj+ 1
2

∣∣∣2. (2.5)

For a function v that is double-valued along E+
h , we define

∥v∥L2(E+
h )

=

√
1

2

(
∥v+∥2

L2(E+
h )

+ ∥v−∥2
L2(E+

h )

)
. (2.6)

Note that the left end x1/2 is excluded from E+
h and ∥ · ∥L2(E+

h )
.

Moreover, we use the standard notation Hℓ (Ij) to represent the Sobolev space on Ij with

the seminorm |v|Hℓ(Ij) = ∥∂ℓ
xv∥L2(Ij) and the norm ∥v∥Hℓ(Ij) =

√∑ℓ
i=0 |v|2Hi(Ij)

, where ℓ ≥ 0

is an integer. We denote by

Hℓ(Th) = {v ∈ L2(Ω) : v|Ij ∈ Hℓ(Ij),∀j = 1, · · · , N} (2.7)

the broken Sobolev space with the seminorm |v|Hℓ(Th) =
√∑N

j=1 |v|2Hℓ(Ij)
and the norm

∥v∥Hℓ(Th) =
√∑N

j=1 ∥v∥2Hℓ(Ij)
.

5
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2.2 Upwind-biased DG scheme and its error estimate

The upwind-biased DG method for (2.1) is formulated as the following: Find uh ∈ Vh

such that

((uh)t, v)Ij − (uh, vx)Ij + ûh,j+ 1
2
v−
j+ 1

2

− ûh,j− 1
2
v+
j− 1

2

= 0, ∀v ∈ Vh, ∀j = 1, · · · , N, (2.8)

where ûh is the so-called upwind-biased numerical flux. To be more specific, we take

ûh,j+ 1
2
=

 {uh}(θ)j+ 1
2

, j = 1, · · · , N
{uh}(θ)N+ 1

2

, j = 0
(2.9)

for the periodic boundary condition, and

ûh,j+ 1
2
=


{uh}(θ)j+ 1

2

, j = 1, · · · , N − 1

g, j = 0
(uh)

−
N+ 1

2

, j = N

(2.10)

for the inflow boundary condition [26, (2.3)-(2.4)]. Recall that θ = {θj+1/2}Nj=1 contains
parameters that may vary with the grid points. Here and in what follows, we assume there
are positive constants µ∗ and µ∗ such that

0 < µ∗ ≤ θj+ 1
2
− 1

2
≤ µ∗ < +∞, ∀j = 1, · · · , N. (2.11)

Note according to our definition, we have θN+1/2 = 1 for the inflow boundary condition. In
the special case that θj+1/2 ≡ 1 for all j, it retrieves the standard purely upwind fluxes.

After summing over all mesh cells, the scheme (2.8) can be written in the global form

((uh)t, v)Th = H(uh, v) + G(v), ∀v ∈ Vh, (2.12)

where

H(uh, v) = (uh, vx)Th +
N∑
j=1

{uh}(θ)j+ 1
2

[v]j+ 1
2

and G(v) =
{

0 for periodic b.c.
gv+1/2 for inflow b.c.

.

(2.13)
The bilinear form H(·, ·) is seminegative, in the sense that [6, 43]

H(v, v) = −
N∑
j=1

(
θj+ 1

2
− 1

2

)
[v]2j+ 1

2
− χ

2

(
v+1

2

)2
≤ −µ∗∥v∥2L2(E+

h )
≤ 0, ∀v ∈ Vh. (2.14)

Here

χ =

{
0 for periodic b.c.
1 for inflow b.c.

. (2.15)

Also note that with the inflow boundary condition, we have θN+1/2 = 1 and v+N+1/2 = 0 at

xN+1/2, which yields
(
θN+1/2 − 1/2

)
[v]2N+1/2 =

1
2
(v−N+1/2)

2, included in H(v, v) in (2.14).
The key to the error analysis of the upwind-biased DGmethod is to construct the so-called

GGR projection. See Lemma 2.1. This lemma was proved using an algebraic approach in
[26, 6]. In Subsection 2.3, we will provide an alternative proof based on an energy approach.

6
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Lemma 2.1 (GGR projection). Suppose the flux parameter θ satisfies the assumption (2.11).
Then for a sufficiently smooth function u, there exists a uniquely defined Πθu, such that

(Πθu, v)Ij = (u, v)Ij , ∀v ∈ Pk−1(Ij), ∀j = 1, · · · , N, (2.16a)

{Πθu}(θ)j+ 1
2

= {u}(θ)
j+ 1

2

, ∀j = 1, · · · , N. (2.16b)

Furthermore, it satisfies the following approximation property

∥u− Πθu∥L2(Th) + h
1
2∥u− Πθu∥L2(E+

h )
≤ Cθh

k+1|u|Hk+1(Th), (2.17)

where Cθ = C (1 + (µ∗ + 1/2)µ−1
∗ ) (1 + (µ∗ +1/2)), and C is a constant that may depend on

k, but is independent of µ∗, µ∗ and h.

With the above projection, one can derive the error estimate of the semidiscrete upwind-
biased DG method. See Theorem 2.2. Its proof can be found in [26] and is also given below
for completeness.

Theorem 2.2. Consider either the periodic boundary condition or the inflow boundary con-
dition. Suppose the exact solution of (2.1) is sufficiently smooth, with uniformly bounded
derivatives ∥u∥Hk+1(Th) and ∥ut∥Hk+1(Th) in time. Suppose θ satisfies (2.11). Then the upwind-
biased DG scheme for (2.1) admits the following error estimate.

∥u− uh∥L2(Th)

∣∣∣∣
t=T

≤ ∥u− uh∥L2(Th)

∣∣∣∣
t=0

+ Cθ,u(1 + T )hk+1, (2.18)

where Cθ,u depends on Cθ in Lemma 2.1, ∥u∥Hk+1(Th), and ∥ut∥Hk+1(Th), but is independent
of h.

Proof. Let e = u− uh, η = u−Πθu and ξ = uh −Πθu. Note the exact solution u admits the
variational equation

(ut, v)Th = H(u, v) + G(v), ∀v ∈ Vh. (2.19)

After subtracting (2.12) from (2.19), we have

(et, v)Th = H(e, v), ∀v ∈ Vh. (2.20)

Note that e = η − ξ and H(η, v) = 0 according to the construction of Πθ. We can split the
terms to obtain

(ξt, v)Th = H(ξ, v) + (ηt, v)Th , ∀v ∈ Vh. (2.21)

Take v = ξ. Recalling the seminegativity of H(·, ·) and applying Cauchy–Schwarz inequality
yield

1

2

d

dt
∥ξ∥2L2(Th) = (ξt, ξ)Th = H(ξ, ξ) + (ηt, ξ)Th ≤ ∥ηt∥L2(Th)∥ξ∥L2(Th). (2.22)

After simplification, one can obtain d
dt
∥ξ∥L2(Th) ≤ ∥ηt∥L2(Th), which gives

∥ξ(·, T )∥L2(Th) ≤ ∥ξ(·, 0)∥L2(Th) + T sup
0≤t≤T

∥ηt(·, t)∥L2(Th). (2.23)

The proof can be completed after applying the triangle inequality ∥e∥L2(Th) ≤ ∥η∥L2(Th) +
∥ξ∥L2(Th) and the approximation estimate of Πθ for ∥η∥L2(Th) and ∥ηt∥L2(Th) in Lemma 2.1.
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In this section, we assumed θj+1/2 − 1/2 ≥ µ∗ > 0 to be uniformly away from 0 by
a positive constant µ∗ for the optimal convergence. In the case that µ∗ = C0h

ω is very
close to 0, where ω > 0 is a constant, one can prove a suboptimal convergence rate for the
corresponding upwind-biased DG schemes.

Theorem 2.3. Under the setting of Theorem 2.2, if θj+1/2 − 1/2 ≥ µ∗ = C0h
ω with ω > 0,

then we have

∥u− uh∥L2(Th)

∣∣∣∣
t=T

≤ ∥u− uh∥L2(Th)

∣∣∣∣
t=0

+ Cθ,u(1 + T )hk+max(1−ω,0), (2.24)

where Cθ,u depends on C0, µ
∗, ∥u∥Hk+1(Th), and ∥ut∥Hk+1(Th), but is independent of h.

Proof. Here we give a very sketched proof. When ω ≥ 1, one can use the standard L2 projec-
tion with the argument in the proof of [25, Theorem 2.2] to show the kth order convergence
rate. When 0 < ω ≤ 1, by following the proof in Section 2.3, one can see that Lemma 2.1
still holds while Cθ ≤ Ch−ω. This gives us

∥u− Πθu∥L2(Th) + h
1
2∥u− Πθu∥L2(E+

h )
≤ Chk+1−ω|u|Hk+1(Th), (2.25)

where C depends on C0 and µ∗. Using the approximation estimate (2.25) in the proof of
Theorem 2.2, we obtain the (k + 1− ω)th order convergence rate.

Remark 2.4. Through the numerical tests in Example 4.1, we can see that the error es-
timates in Theorem 2.3 are sharp in general. However, on uniform meshes with an even
polynomial order k, one may observe the optimal (k + 1)th order convergence rate. This
relates to the fact that the DG methods with central fluxes (θ = 1/2) are optimal. We refer
to [25] for details.

2.3 An energy-based proof of Lemma 2.1

In this section, we provide proof of Lemma 2.1 based on the energy approach.

Proof. Note the case θ ≡ 1 retrieves the classical GR projection Π1. The operator is locally-
defined through the relationships

(Π1u, v)Ij = (u, v)Ij , ∀v ∈ Pk−1(Ij), ∀j = 1, · · · , N, (2.26a)

(Π1u)
−
j+ 1

2

= u−
j+ 1

2

, ∀j = 1, · · · , N. (2.26b)

This projection is well-defined and its approximation property (2.17) is well-understood [4,
Corollary 3.13]. We observe that Lemma 2.1 holds for θ ≡ 1 and will use perturbation
analysis to prove the general case.

Let us define
δ := (Πθ − Π1)u. (2.27)

Note δ ∈ Vh. By subtracting (2.26) from (2.16), it can be seen that δ satisfies the following
equations

(δ, v)Ij = 0, ∀v ∈ Pk−1(Ij), ∀j = 1, · · · , N, (2.28a)

{δ}(θ)
j+ 1

2

= η̄j+ 1
2
, ∀j = 1, · · · , N, (2.28b)

8
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where
η̄j+ 1

2
= {u− Π1u}(θ)j+ 1

2

= θ̃j+ 1
2
(u− Π1u)

+
j+ 1

2
. (2.29)

We claim that (which will be proved later in Lemma 2.6): if (2.28) has a solution, then the
solution admits the estimate

∥δ∥L2(Th) + h
1
2∥δ∥L2(E+

h )
≤ Ĉθh

1
2∥η̄∥L2(E+

h )
, with Ĉθ = C

(
1 +

(
µ∗ +

1

2

)
µ−1
∗

)
. (2.30)

With this estimate, we can show that (2.28) has a unique solution as follows. Indeed, when
η̄ = 0, we know that δ = 0 is a solution to (2.28). Furthermore, δ = 0 has to be the only

solution because (2.30) implies ∥δ∥L2(Th) + h
1
2∥δ∥L2(E+

h )
≤ 0. Therefore, when the system

(2.28) is homogeneous, with η̄ = 0, it has a unique solution δ = 0. Recall that Axxx = 000 has a
unique solution xxx = 000 implies that the solution to Axxx = bbb, if it exists, is unique. Hence we
prove the uniqueness of the solution to (2.28) also for η̄ ̸= 0. Moreover, note that (2.28) is a
linear, square, and finite-dimensional system, the uniqueness of the solution also implies the
existence of the solution. Hence (2.28) is unisolvent.

For the uniquely defined δ, we once again look into the estimate (2.30). Also note that
η̄ = {u−Π1u}(θ), and the error term u−Π1u satisfies the estimate (2.17) with θ = 1, which
leads to

∥η̄∥L2(E+
h )

≤ C

(
µ∗ +

1

2

)
hk+ 1

2 |u|Hk+1(Th). (2.31)

Therefore, substituting (2.31) into (2.30), we have the estimate of the difference term:

∥δ∥L2(Th) + h
1
2∥δ∥L2(E+

h )
≤ Cθh

k+1|u|Hk+1(Th). (2.32)

Recall that Πθu = Π1u + δ. Hence Πθu is also uniquely determined. Its approximation
estimate (2.17) is based on that of δ and Π1u, and can be obtained after applying the
triangle inequality

∥u− Πθu∥L2(Th) + h
1
2∥u− Πθu∥L2(E+

h )

≤∥u− Π1u∥L2(Th) + h
1
2∥u− Π1u∥L2(E+

h )
+ ∥δ∥L2(Th) + h

1
2∥δ∥L2(E+

h )

≤Cθh
k+1|u|Hk+1(Th).

(2.33)

It now suffices to prove (2.30), which is obtained from Proposition 2.5 and Lemma 2.6.

Proposition 2.5. Given a real number z, there is a unique function Z ∈ Pk(Ij) such that

(Z, v)Ij = 0, ∀v ∈ Pk−1(Ij), (2.34a)

Z−
j+ 1

2

= z. (2.34b)

Moreover, we have

∥Z∥L2(Ij) ≤ Ch
1
2
j |z|, (2.35)

where C is a constant only dependent on k.

9
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Proof. Firstly, we make the following assumption which will be proved in the next paragraph:
if Z is a solution to (2.34), then it satisfies the estimate (2.35). With this assumption, we
can prove that (2.34) has a unique solution: When z = 0, we know that the system (2.34)
has a solution Z = 0, which is indeed the only solution due to the estimate ∥Z∥L2(Ij) ≤
Ch

1/2
j |z| = 0. Hence the solution to (2.34) is unique when z = 0. By the linearity of the

equation system, the solution to (2.34) with z ̸= 0, if it exists, is also unique. This proves
the uniqueness of the solution to (2.34). Furthermore, note that (2.34) is a linear, square,
and finite-dimensional system of Z. The uniqueness of the solution to (2.34) also implies the
existence of the solution. Hence (2.34) is unisolvent.

Now we prove the estimate (2.35). Let us denote by Î = [−1, 1]. We can write (2.34a)
as Z(·) ∈ P⊥

k−1(Ij) and hence Z(·hj/2 + xj) ∈ P⊥
k−1(Î). Here xj is the midpoint of Ij.

Furthermore, by changing the variable, it yields

∥Z(·)∥2L2(Ij)
=

hj

2
∥Z (·hj/2 + xj) ∥2L2(Î). (2.36)

Note that |||v||| := |v(1)| is a norm on P⊥
k−1(Î).

1 Using the norm equivalence in the finite-
dimensional space, we have

hj

2
∥Z (·hj/2 + xj) ∥2L2(Î)

≤ Chj|||Z (·hj/2 + xj)|||2 = Chj

∣∣∣Z−
j+ 1

2

∣∣∣2 = Chj|z|2. (2.37)

The proof of (2.35) is completed after combining (2.36) and (2.37).

Lemma 2.6. Let δ be the solution of (2.28). Then δ is well-defined and satisfies (2.30).

Proof. We divide the proof of this lemma into three steps.
Step 1: Estimate of ∥ [δ] ∥L2(E+

h )
. We take v = δx in (2.28a), multiply (2.28b) with [δ],

add the two equations and sum over all j. It then yields

N∑
j=1

(
(δ, δx)j + {δ}(θ)

j+ 1
2

[δ]j+ 1
2

)
=

N∑
j=1

η̄j+ 1
2
[δ]j+ 1

2
.

Note that the left side assembles the bilinear form H(δ, δ). According to (2.14), we have

µ∗∥ [δ] ∥2L2(E+
h )

≤
N∑
j=1

(
θj+ 1

2
− 1

2

)
[δ]2j+ 1

2
+

χ

2

(
δ+1

2

)2
= |H(δ, δ)| =

∣∣∣∣∣
N∑
j=1

η̄j+ 1
2
[δ]j+ 1

2

∣∣∣∣∣ . (2.38)

One can then apply Cauchy–Schwarz inequality on the right side to obtain

µ∗∥ [δ] ∥2L2(E+
h )

≤ ∥η̄∥L2(E+
h )
∥ [δ] ∥L2(E+

h )
, (2.39)

which gives
∥ [δ] ∥L2(E+

h )
≤ µ−1

∗ ∥η̄∥L2(E+
h )
. (2.40)

1Since |||·||| is already a seminorm, it suffices to show |v(1)| = 0 implies v ≡ 0, ∀v ∈ P⊥
k−1(Î). Indeed,

note that P⊥
k−1(Î) = {alk(x)|a ∈ R}, where lk(x) is the kth-order Legendre polynomial on Î. For v = alk(x),

since lk(1) ̸= 0, one can see that v(1) = 0 implies a = 0 and hence v ≡ 0.

10
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Step 2: Estimate of ∥δ∥L2(E+
h )
. Add δ−j+1/2 − {δ}(θ)j+1/2 on both sides of (2.28b). It gives

δ−
j+ 1

2

= η̄j+ 1
2
− θ̃j+ 1

2
[δ]j+ 1

2
. (2.41)

Hence using the triangle inequality and the estimate (2.40), we have

∥δ−∥L2(E+
h )

≤∥η̄∥L2(E+
h )

+

(
sup

1≤j≤N

∣∣∣θ̃j+ 1
2

∣∣∣) ∥[δ]∥L2(E+
h )

≤
(
1 + sup

1≤j≤N

∣∣∣θ̃j+ 1
2

∣∣∣µ−1
∗

)
∥η̄∥L2(E+

h )
≤ Ĉθ∥η̄∥L2(E+

h )
.

(2.42)

Similarly, we can add δ+j+1/2 − {δ}(θ)j+1/2 on both sides of (2.28b) to obtain

δ+
j+ 1

2

= η̄j+ 1
2
+ θj+ 1

2
[δ]j+ 1

2
. (2.43)

Following the derivation in (2.42) yields a similar estimate ∥δ+∥L2(E+
h )

≤ Ĉθ∥η̄∥L2(E+
h )
. There-

fore, we have

∥δ∥L2(E+
h )

=

√
1

2

(
∥δ+∥2

L2(E+
h )

+ ∥δ−∥2
L2(E+

h )

)
≤ Ĉθ∥η̄∥L2(E+

h )
. (2.44)

Step 3: Estimate of ∥δ∥L2(Th). Note that δ|Ij satisfies (2.34) with z = δ−j+1/2. Therefore,
Proposition 2.5 implies

∥δ∥L2(Ij) ≤ Ch
1
2
j

∣∣∣δ−
j+ 1

2

∣∣∣ . (2.45)

After taking the square, summing over all j, and applying the estimate (2.42), one can obtain

∥δ∥2L2(Th) =
N∑
j=1

∥δ∥2L2(Ij)
≤ C

N∑
j=1

hj

∣∣∣δ−
j+ 1

2

∣∣∣2 ≤ Ch∥δ−∥2
L2(E+

h )
≤ Ĉ2

θh∥η̄∥2L2(E+
h )
. (2.46)

Finally, the proof of (2.30) can be completed after combining (2.44) and (2.46).

Remark 2.7. In the analysis of [26] and [6], the authors provide an algebraic proof of
Lemma 2.6. The proof uses the fact that the linear system of (2.28) under a given basis can
be assembled and solved explicitly. For periodic boundary condition, this methodology has
been applied to construct the GGR projection with one of the following settings:

1. θj+1/2 ≡ θ1/2 is constant;

2. There exists an index j∗ such that θj∗+1/2 = 1 (or −1 for ut = ux).

The associated matrix is circulant for the first case and is triangular (after permutation) for
the second case, which can be both inverted analytically in a neat form. For general θ, the
algebraic approach to construct the corresponding GGR projection would still work, but one
has to deal with the complication of inverting the bidiagonal matrix with a periodic boundary.
While the energy-based analysis in Subsection 2.3 does not rely on these specialties of θ and
the case with general θ can be covered. See Subsection 2.4 for further discussions.

11
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2.4 A more general projection

The energy approach can be used to analyze the following projection operator, for which
the flux coefficient θ may vary at different mesh cells. This projection can be used to prove the
optimal error estimates of the upwind-biased DG method for the linear advection equation
with degenerate variable coefficients ut + a(x)ux = 0 and the DG methods with generalized
local Lax–Friedrichs fluxes for nonlinear conservation laws ut+ f(u)x = 0. See Remark 2.10.

Lemma 2.8. Given θ = {θj}Nj=1 such that

0 < µ∗ ≤
∣∣∣∣θj − 1

2

∣∣∣∣ ≤ µ∗ < +∞, ∀j = 1, · · · , N, (2.47)

there exists a uniquely defined Πθu satisfying

(Πθu, v)Ij = (u, v)Ij , ∀v ∈ Pk−1(Ij), ∀j = 1, · · · , N, (2.48a)

{Πθu}
(θj)

j+ 1
2

= {u}(θj)
j+ 1

2

, if θj >
1

2
, ∀j = 1, · · · , N, (2.48b)

{Πθu}
(θj)

j− 1
2

= {u}(θj)
j− 1

2

, if θj <
1

2
, ∀j = 1, · · · , N. (2.48c)

Furthermore, we have

∥u− Πθu∥L2(Th) + h
1
2∥u− Πθu∥L2(E+

h )
≤ Cθh

k+1|u|Hk+1(Th), (2.49)

where Cθ = C (1 + (µ∗ + 1/2)µ−1
∗ )
(
1 + (µ∗ + 1/2)µ

−1/2
∗

)
(1 + (µ∗ + 1/2)), and C is a con-

stant dependent on k, but is independent of µ∗, µ∗ and h.

An energy-based proof of Lemma 2.8 is given in Appendix A.

Remark 2.9. With θj = θj+1/2 > 1/2, (2.48) retrieves the GGR projection in Lemma 2.1.

Remark 2.10. Suppose the sequence θ = {θj+1/2}Nj=1 changes sign only twice. We have{
θj+ 1

2
> 1

2
, if β ≤ j ≤ γ − 1

θj+ 1
2
< 1

2
, otherwise

. (2.50)

The choice

θj =


1 if j = γ
θj+ 1

2
if β ≤ j ≤ γ − 1

θj− 1
2

otherwise
(2.51)

yields the projection

(Πθu, v)Ij = (u, v)Ij , ∀v ∈ Pk−1(Ij), ∀j = 1, · · ·N, (2.52a)

(Πθu)
−
j+ 1

2
= u−

j+ 1
2

, if j = γ, (2.52b)

{Πθu}(θ)j+ 1
2

= {u}(θ)
j+ 1

2

, if β ≤ j ≤ γ − 1, (2.52c)

{Πθu}(θ)j− 1
2

= {u}(θ)
j− 1

2

, otherwise, (2.52d)

12
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which retrieves the projection constructed in [19, Lemma 3.1] for optimal error estimates
of the upwind-biased DG methods for the linear advection equation with degenerate variable
coefficients. Moreover, let us assume λ > |ν|. If we change the parametrization in (2.50) as θj+ 1

2
:= 1

2
+
(
λj+ 1

2
+ νj+ 1

2

)
> 1

2
, if β ≤ j ≤ γ − 1

θj+ 1
2
:= 1

2
−
(
λj+ 1

2
− νj+ 1

2

)
< 1

2
, otherwise

, (2.53)

then (2.52) will retrieve the piecewise global projection in [21, Lemma 3.2] that is used for
optimal error estimates of the DG methods for nonlinear conservation laws with generalized
local Lax–Friedrichs fluxes.

3 Multi-dimensional case

In this section, we consider the linear advection equation in multidimensions,

ut + ∂βββu = 0, u = u(xxx, t), (xxx, t) ∈ Ω× (0, T ). (3.1)

Here ∂βββ = βββ · ∇ and βββ is a non-zero constant vector. We assume Ω ⊆ Rd, d = 2, 3. To avoid
unnecessary technicality, let us only consider the periodic boundary condition and hence
assume Ω is a rectangular domain in 2D or a cuboid domain in 3D, although the inflow
boundary condition with a convex polygonal domain can be analyzed along similar lines.

3.1 Notations

3.1.1 Mesh partition

Let Th = {K} be a partition of the domain Ω with simplices. Given a simplex K and a
face e ∈ ∂K, we use nnneK to represent the outward unit vector along e with respect to K. The
subscripts of nnn may be omitted when it does not cause confusion. Let hK be the diameter
of K and h = maxK∈Th hK . We assume Th to be shape-regular. In other words, there exists
a positive constant σ > 0, such that

hK/ρK ≤ σ, ∀K ∈ Th, (3.2)

where ρK is the diameter of the inscribed ball of K. In addition to the shape-regularity
assumption, we also assume Th satisfies the following flow condition [9]:

(A1) Each simplex K has a unique outflow face with respect to βββ, denoted by e+K . (3.3a)

(A2) Each interior face e+K is included in an inflow face with respect to βββ of (3.3b)

another simplex.

Here we say e is an outflow (inflow) face with respect to βββ if βββ · nnneK > (<) 0. The set of
all outflow faces is denoted by E+

h := ∪K∈Th{e+K}. Note that hanging nodes are allowed if
they do not appear on the outflow face of a simplex. Further characterizations on meshes
satisfying the flow condition (3.3), including their construction on general polygonal domains
in any dimensions, can be found in [9].

13
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Remark 3.1. Typically, the flow condition (3.3) may imply a strong assumption that many
faces in the mesh partition have to be parallel to the flow direction βββ, so that the upwind-biased
DG scheme can be written in the form of Proposition 3.3 and the number of cell-interface
terms in the error estimates can be reduced. For optimal error estimates, the flow condition
(3.3) can be relaxed. It can allow more than one outflow face by either having faces to
be “almost parallel” to βββ or requiring the number of those outflow faces to be appropriately
bounded. We refer to [11] for details. More generally, when the flow condition is not satisfied,
we may observe (k+ 1/2)th order convergence rate for some numerical tests, see [27] for an
example.

In addition, we note that the flow condition (3.3a) together with the shape-regularity
condition (3.2) implies the transversality condition on E+

h (but not on all edges of Th). See
Lemma 3.2, whose proof is given in Appendix B.

Lemma 3.2 (Transversality condition on E+
h ). For d = 2, 3, there exists a positive constant

γ, which depends on the shape-regularity constant σ, such that

βββ · nnne+K
≥ |βββ|γ > 0, ∀K ∈ Th. (3.4)

3.1.2 Finite element space, inner products, and norms

The finite element space of DG discretization is taken as

Vh = {v ∈ L2(Ω) : v|K ∈ Pk(K)}, (3.5)

where Pk(K) is the linear span of polynomials on K of degree less than or equal to k. Along
a face e, we denote by v± = limε→0± v(x+ εβββ). As those in the 1D case, we use

[v] = v+ − v− and {v}(θ) = (θv)− +
(
θ̃v
)+

, with θ̃ = 1− θ, (3.6)

for the jump and weighted average of v across a face, respectively. Let us denote by β̂ββ = βββ/|βββ|
the unit vector with the same direction as βββ. Let w and v be single-valued functions defined
along the element edges in (3.7), and be functions in Vh in (3.8) and (3.9). The following
notations will be used in our analysis.

⟨w, v⟩e =
∫
e

wvdl, ∥v∥L2(e) =
√
⟨v, v⟩e, ∥v∥β̂ββ,L2(e+K)

=

√〈
β̂ββ · nnnv, v

〉
e+K

, (3.7)

(w, v)K =

∫
K

wvdxxx, ∥v∥L2(K) =
√
(v, v)K , ∥v∥β̂ββ,L2(K) =

√(
β̂ββ · nnne+K

v, v
)
K
, (3.8)

(w, v)Th =
∑
K∈Th

(w, v)K , ∥v∥L2(Th) =

√∑
K∈Th

∥v∥2L2(K), ∥v∥β̂ββ,L2(Th) =

√∑
K∈Th

∥v∥2
β̂ββ,L2(K)

. (3.9)

14
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Furthermore, for a single-valued function w and a double-valued function v along the outflow
edges, let us define

∥w∥L2(E+
h )

=

√∑
K∈Th

∥w∥2
L2(e+K)

, ∥v∥L2(E+
h )

=

√
1

2

(
∥v+∥2

L2(E+
h )

+ ∥v−∥2
L2(E+

h )

)
, (3.10)

∥w∥β̂ββ,L2(E+
h )

=

√∑
K∈Th

∥w∥2
β̂ββ,L2(e+K)

, ∥v∥β̂ββ,L2(E+
h )

=

√
1

2

(
∥v+∥2

β̂ββ,L2(E+
h )

+ ∥v−∥2
β̂ββ,L2(E+

h )

)
. (3.11)

Note that due to Lemma 3.2, ∥ · ∥L2(E+
h )

and ∥ · ∥β̂ββ,L2(E+
h )

are equivalent, and ∥ · ∥L2(Th) and

∥ · ∥β̂ββ,L2(Th) are equivalent, upto a constant dependent on γ (and hence σ).

As before, letting ℓ ≥ 0 be an integer, we use the standard notation Hℓ (K) to represent
the Sobolev space on K with the seminorm | · |Hℓ(K) and the norm ∥ · ∥Hℓ(K). We denote by

Hℓ(Th) = {v ∈ L2(Ω) : v|K ∈ Hℓ(K),∀K ∈ Th} (3.12)

the broken Sobolev space with the seminorm |v|Hℓ(Th) =
√∑

K∈Th |v|
2
Hℓ(K)

and the norm

∥v∥Hℓ(Th) =
√∑

K∈Th ∥v∥
2
Hℓ(K)

.

3.2 Upwind-biased DG scheme and its error estimate

The upwind-biased DG scheme for (3.1) is defined as the following: Find uh ∈ Vh, such
that

((uh)t, v)K − (uh, ∂βββv)K +
∑

eK∈∂K

〈
{uh}(θ),βββ · nnnv

〉
eK

= 0, ∀v ∈ Vh. (3.13)

Proposition 3.3. Under the flow condition (3.3a), the DG scheme (3.13) can be equivalently
written as

((uh)t, v)Th = H(uh, v;βββ), ∀v ∈ Vh, (3.14)

where
H(uh, v;βββ) = (uh, ∂βββv)Th +

∑
K∈Th

〈
{uh}(θ),βββ · nnn [v]

〉
e+K
. (3.15)

Moreover, we have

H(v, v;βββ) = −|βββ|
∑
K∈Th

((
θe+K − 1

2

)
∥[v]∥2

β̂ββ,L2(e+K)

)
, ∀v ∈ Vh. (3.16)

Proof. (3.14) can be proved by taking the summation of (3.13) over all mesh cells, combining
the integrals along cell interfaces for adjacent elements, and finally noting that βββ · nnn = 0 if
the edge is not an inflow or outflow edge for any K. (3.16) can be verified through a similar
argument as the proof of (2.14).
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As one can see from (3.14) and (3.15), one only needs to specify θ along E+
h . Here we

make the following assumption.

0 ≤ µ∗ ≤ θe+K − 1

2
≤ µ∗ < +∞, ∀K ∈ Th. (3.17)

In the following lemma, we define a global projection associated with the special simplex
mesh, whose proof is based on an energy approach and is postponed to Section 3.3.

Lemma 3.4. Suppose Th is a shape-regular mesh (3.2) satisfying the flow condition (3.3)
and the flux parameter {θe+K}K∈Th satisfies (3.17). Then for any sufficiently smooth function
u, there exists a unique Πθu such that

(Πθu, v)K = (u, v)K , ∀v ∈ Pk−1(K), ∀K ∈ Th, (3.18a)〈
{Πθu}(θ), w

〉
e+K

=
〈
{u}(θ), w

〉
e+K
, ∀w ∈ Pk

(
e+K
)
, ∀K ∈ Th. (3.18b)

Furthermore, we have

∥u− Πθu∥L2(Th) + h
1
2∥u− Πθu∥L2(E+

h )
≤ Cθh

k+1|u|Hk+1(Th), (3.19)

where Cθ = C(1 + (µ∗ + 1/2)µ−1
∗ ) (1 + (µ∗ + 1/2)) and C is a constant dependent on k and

σ, but is independent of µ∗, µ∗ and h.

With the projection in Lemma 3.4, we are able to prove the optimal error estimate of
(3.13), as outlined in the theorem below. The proof is omitted here, since it is the same as
that of the 1D case, except for replacing H(·, ·) with H(·, ·;βββ).

Theorem 3.5. Suppose the exact solution of (3.1) is sufficiently smooth, with uniformly
bounded ∥u∥Hk+1(Th) and ∥ut∥Hk+1(Th). For Th and θ satisfying conditions in Lemma 3.4, the
upwind-biased DG scheme (3.13) for (3.1) admits the following error estimate

∥u− uh∥L2(Th)

∣∣∣∣
t=T

≤ ∥u− uh∥L2(Th)

∣∣∣∣
t=0

+ Cθ,u(1 + T )hk+1, (3.20)

where Cθ,u depends on Cθ in Lemma 3.4, ∥u∥Hk+1(Th), and ∥ut∥Hk+1(Th), but is independent
of h.

Remark 3.6. In general, when θj+1/2 − 1/2 ≥ µ∗ = C0h
ω with ω > 0, we expect similar

suboptimal convergence as that in the 1D case (see Theorem 2.3). A numerical test with P 1

elements on unstructured meshes is given in Table 4.7 of Example 4.3.

Remark 3.7. The projection in Lemma 3.4 can be considered as a multidimensional ex-
tension of those in Lemmas 2.1 and 2.8. Indeed, it is written in a closer format as that
in Lemma 2.8. The main complication in defining the 1D projection in Lemma 2.8 is to
specify whether the outflow edge should be xj−1/2 or xj+1/2. While this complication has been
automatically taken care of in the multidimensional case with the notation of e+K.
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Remark 3.8. Here although we focus on the case with constant coefficients, we expect sim-
ilar optimal error estimates can be obtained for the case with variable coefficients. In [11],
Cockburn et al. relaxed the mesh condition in (3.3) and proved optimal error estimates of the
purely upwind DG methods for the steady state transport equation with variable coefficients.
The analysis utilizes the local projection in [9, 10] corresponding to θ = 1 in Lemma 3.4.
We expect that optimal error estimates can be extended to the variable coefficient case by
following similar argument in [11] and replacing the local projection by the global projection
in Lemma 3.4.

3.3 Proof of Lemma 3.4

Note that θ ≡ 1 retrieves a local projection operator. It is well-defined and its approxi-
mation property has been shown in [9, Lemma 2.1] and [10, Proposition 2.1].2

Lemma 3.9. Lemma 3.4 holds for θ ≡ 1.

The proof of Lemma 3.9 is based on a multi-dimensional version of Proposition 2.5, which
is stated in Lemma 3.10. The proof of Lemma 3.10 can be found in [10, Lemma 3.1].

Lemma 3.10. Given a face e of the simplex K and a function z ∈ L2(e), there is a unique
function Z ∈ Pk(K) such that

(Z, v)K = 0, ∀v ∈ Pk−1(K), (3.21a)

⟨Z,w⟩e = ⟨z, w⟩e, ∀w ∈ Pk(e). (3.21b)

Moreover,

∥Z∥L2(K) ≤ Ch
1
2
K∥z∥L2(e), (3.22)

where C depends solely on the polynomial degree k and the shape regularity constant σ.

With a well-defined local projection Π1 and the estimate with trace (3.22). We can use
an energy argument to prove Lemma 3.4. The proof is very similar to that of the 1D result
in Subsection 2.3.

Proof of Lemma 3.4. Let δ := (Πθ − Π1)u. Set θ ≡ 1 in (3.18) and subtract the resulted
equation from (3.18) with a general θ. Then it yields

(δ, v)K = 0, ∀v ∈ Pk−1(K), ∀K ∈ Th, (3.23a)〈
{δ}(θ), w

〉
e+K

= ⟨η̄, w⟩e+K , ∀w ∈ Pk

(
e+K
)
, ∀K ∈ Th. (3.23b)

Here η̄ = {u − Π1u}(θ). As that in the 1D case, the key is to show that: if δ solves (3.23),
then

∥δ∥L2(Th) + h
1
2∥δ∥L2(E+

h )
≤ Ĉθh

1
2∥η̄∥L2(E+

h )
, with Ĉθ = C

(
1 +

(
µ∗ +

1

2

)
µ−1
∗

)
. (3.24)

2In the papers by Cockburn et al., the estimate of ∥u − Π1u∥L2(K) is proved. The estimate of the trace
∥u−Π1u∥L2(e+K)

can be obtained after applying the inverse trace inequality.
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Recall the transversality condition on outflow edges in Lemma 3.2. Since 0 < γ ≤ β̂ββ ·nnn ≤ 1,
∥ · ∥β̂ββ,L2(Th) and ∥ · ∥L2(Th) are equivalent and ∥ · ∥β̂ββ,L2(E+

h )
and ∥ · ∥L2(E+

h )
are equivalent, upto

a positive constant dependent on γ (and hence σ). Therefore, it suffices to show that

∥δ∥β̂ββ,L2(Th) + h
1
2∥δ∥β̂ββ,L2(E+

h )
≤ Ĉθh

1
2∥η̄∥β̂ββ,L2(E+

h )
, (3.25)

which is proved through the following three steps.
Step 1: Estimate of ∥ [δ] ∥L2(E+

h )
. Under the assumption (3.3b), we have

[δ]
∣∣
e+K

∈ Pk

(
e+K
)
. (3.26)

Hence we can take v = ∂β̂ββδ := β̂ββ · ∇δ and w = [δ] β̂ββ · nnn in (3.23). After summing over all
mesh cells, it then yields(

δ, ∂β̂ββδ
)
Th

+
∑
K∈Th

〈
{δ}(θ), [δ] β̂ββ · nnn

〉
e+K

=
∑
K∈Th

〈
η̄, [δ] β̂ββ · nnn

〉
e+K

. (3.27)

Note the left hand side is simply H(δ, δ;βββ)/|βββ|. Taking the absolute value on both sides and
applying (3.16) and (3.17) to the left side, it yields

µ∗∥ [δ] ∥2β̂ββ,L2(E+
h )

≤
∑
K∈Th

((
θe+K − 1

2

)
∥[δ]∥2

β̂ββ,L2(e+K)

)
=

|H(δ, δ;βββ)|
|βββ|

=

∣∣∣∣∣∑
K∈Th

〈
η̄, [δ] β̂ββ · nnn

〉
e+K

∣∣∣∣∣ .
(3.28)

We then apply the Cauchy–Schwarz inequality to the right side to get

µ∗∥ [δ] ∥2β̂ββ,L2(E+
h )

≤ ∥η̄∥β̂ββ,L2(E+
h )
∥ [δ] ∥β̂ββ,L2(E+

h )
, (3.29)

which gives
∥ [δ] ∥β̂ββ,L2(E+

h )
≤ µ−1

∗ ∥η̄∥β̂ββ,L2(E+
h )
. (3.30)

Step 2: Estimate of ∥δ∥β̂ββ,L2(E+
h )
. One can deduce from (3.23b) that〈

δ−, w
〉
e+K

=
〈
η̄ − θ̃ [δ] , w

〉
e+K

, ∀w ∈ Pk

(
e+K
)
. (3.31)

Take w = β̂ββ ·nnnδ−, sum over all elements K, and then apply the Cauchy–Schwarz inequality.
It yields

∥δ−∥2
β̂ββ,L2(E+

h )
=
∑
K∈Th

〈
δ−, β̂ββ · nnnδ−

〉
e+K

=
∑
K∈Th

〈
η̄ − θ̃ [δ] , β̂ββ · nnnδ−

〉
e+K

≤ ∥η̄ − θ̃ [δ] ∥β̂ββ,L2(E+
h )
∥δ−∥β̂ββ,L2(E+

h )
.

(3.32)

We then divide by ∥δ−∥β̂ββ,L2(E+
h )

on both sides, apply the triangle inequality, and recall the

estimate of ∥ [δ] ∥β̂ββ,L2(E+
h )

in (3.30). It gives

∥δ−∥β̂ββ,L2(E+
h )

≤ ∥η̄∥β̂ββ,L2(E+
h )

+

(
sup
K∈Th

∣∣∣θ̃e+K ∣∣∣
)

∥ [δ] ∥β̂ββ,L2(E+
h )

≤
(
1 + sup

K∈Th

∣∣∣θ̃e+K ∣∣∣µ−1
∗

)
∥η̄∥β̂ββ,L2(E+

h )

≤ Ĉθ∥η̄∥β̂ββ,L2(E+
h )
.

(3.33)
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Similarly, with 〈
δ+, w

〉
e+K

= ⟨η̄ + θ [δ] , w⟩e+K , ∀w ∈ Pk

(
e+K
)
, (3.34)

we can use a similar argument to obtain ∥δ+∥β̂ββ,L2(E+
h )

≤ Ĉθ∥η̄∥β̂ββ,L2(E+
h )
. Therefore we have

∥δ∥β̂ββ,L2(E+
h )

=

√
1

2

(
∥δ+∥2

β̂ββ,L2(E+
h )

+ ∥δ−∥2
β̂ββ,L2(E+

h )

)
≤ Ĉθ∥η̄∥β̂ββ,L2(E+

h )
. (3.35)

Step 3: Estimate of ∥δ∥β̂ββ,L2(Th). Applying Lemma 3.10 with

e = e+K , Z = δ
√
β̂ββ · nnne+K

, and z = δ−
√
β̂ββ · nnne+K

, (3.36)

one can obtain
∥δ∥β̂ββ,L2(K) ≤ Ch

1
2
K∥δ

−∥β̂ββ,L2(e+K)
, (3.37)

which gives

∥δ∥β̂ββ,L2(Th) =

√∑
K∈Th

∥δ∥2
β̂ββ,L2(K)

≤
√∑

K∈Th

ChK∥δ−∥2β̂ββ,L2(e+K)
≤ Ch

1
2∥δ−∥β̂ββ,L2(E+

h )
. (3.38)

Then we use the estimate (3.33) to obtain

∥δ∥β̂ββ,L2(Th) ≤ Ĉθh
1
2∥η̄∥β̂ββ,L2(E+

h )
. (3.39)

We can combine (3.35) and (3.39) to obtain (3.25) and hence (3.24).

Finally, to prove Lemma 3.4, we can use the estimate in (3.39) to show that the solution
to (3.23) is unique. Furthermore, through a simple dimension count in Proposition C.1,
one can see that (3.23) is a square system, for which the uniqueness of the solution implies
the existence of the solution. Hence δ is uniquely solvable. Furthermore, noting that η̄ =
{u− Π1u}(θ), Lemma 3.9 implies

∥η̄∥L2(E+
h )

≤ C

(
µ∗ +

1

2

)
∥u− Π1u∥L2(E+

h )
≤ C

(
µ∗ +

1

2

)
hk+ 1

2 |u|Hk+1(Th). (3.40)

Together with (3.24), it gives

∥δ∥L2(Th) + h
1
2∥δ∥L2(E+

h )
≤ Cθh

k+1|u|Hk+1(Th). (3.41)

As a result, Πθu = Π1u+ δ is well-defined, with Π1u admitting the approximation property
in Lemma 3.9 and δ admitting the estimate (3.41). The approximation estimate (3.19) can
be obtained after applying the triangle inequality

∥u− Πθu∥L2(Th) + h
1
2∥u− Πθu∥L2(E+

h )

≤ ∥u− Π1u∥L2(Th) + h
1
2∥u− Π1u∥L2(E+

h )
+ ∥δ∥L2(Th) + h

1
2∥δ∥L2(E+

h )

≤ Cθh
k+1|u|Hk+1(Th).

(3.42)
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3.4 Difficulties on extension to 2D Cartesian meshes

In this subsection, we briefly comment on the difficulties of using the energy approach to
construct global projection operators for optimal error estimates of the upwind-biased DG
methods on 2D Cartesian meshes with either Qk or P k elements. Here we only present some
native attempts based on the techniques in the previous subsection, and comment on the
potential difficulties. There may be ways to circumvent these difficulties and we will leave
them to future investigations.

For simplicity, we assume βββ = (1, 1)T and the equation (3.1) becomes

ut + ux + uy = 0, u = u(x, y, t). (3.43)

The mesh partition is given by Ω = ∪i,j{Kij}, where Kij = Ii × Jj = (xi−1/2, xi+1/2) ×
(yj−1/2, yj+1/2). The finite element space is set as

Vh = {v ∈ L2(Ω) : v|Kij
∈ Zk (Kij) ,∀i, j}. (3.44)

Here Zk (Kij) = Pk (Kij) for P
k elements and Zk (Kij) = Qk (Kij) for Q

k elements. Qk (Kij)
is the space spanned by polynomials on Kij of degree less than or equal to k in each variable.
In below, θ1 > 1/2 and θ2 > 1/2 are given constant parameters.

3.4.1 Qk elements

The optimal error estimates of upwind-biased DG methods on 2D Cartesian meshes were
proved in [26] using the 2D GGR projection [26, 6]. The 2D GGR projection Πθ1,θ2 :=
Πθ1 ⊗ Πθ2 is defined as the tensor product of the one-dimensional projections. To be more
specific, for any u, we want to find Πθ1,θ2u ∈ Vh such that

∫
Kij

(Πθ1,θ2u) vdxdy =

∫
Kij

uvdxdy, ∀v ∈ Qk−1(Kij), (3.45a)∫
Jj

{Πθ1,θ2u}
(θ1,y)

i+ 1
2
,y
vdy =

∫
Jj

{u}(θ1,y)
i+ 1

2
,y
vdy, ∀v ∈ Pk−1(Jj), (3.45b)∫

Ii

{Πθ1,θ2u}
(x,θ2)

x,j+ 1
2

vdx =

∫
Ii

{u}(x,θ2)
x,j+ 1

2

vdx, ∀v ∈ Pk−1(Ii), (3.45c)

{Πθ1,θ2u}
(θ1,θ2)

i+ 1
2
,j+ 1

2

= {u}(θ1,θ2)
i+ 1

2
,j+ 1

2

. (3.45d)

Here we have

{w}(θ1,y)
i+ 1

2
,y
= θ1w

(
x−
i+ 1

2

, y
)
+ θ̃1w

(
x+
i+ 1

2

, y
)
, (3.46a)

{w}(x,θ2)
x,j+ 1

2

= θ2w
(
x, y−

j+ 1
2

)
+ θ̃2w

(
x, y+

j+ 1
2

)
, (3.46b)

{w}(θ1,θ2)
i+ 1

2
,j+ 1

2

= θ1θ2w
(
x−
i+ 1

2

, y−
j+ 1

2

)
+ θ1θ̃2w

(
x−
i+ 1

2

, y+
j+ 1

2

)
+ θ̃1θ2w

(
x+
i+ 1

2

, y−
j+ 1

2

)
+ θ̃1θ̃2w

(
x+
i+ 1

2

, y+
j+ 1

2

)
, (3.46c)
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and θ̃l = 1− θl for l = 1, 2.
To study the projection Πθ1,θ2 by the energy approach, we want to construct the bilinear

form associated with the linear advection

H (w, v) =
∑
i,j

(∫
Kij

w (a1vx + a2vy) dxdy

−a1

∫
Jj

{w}(θ1,y)
i+ 1

2
,y
v
(
x−
i+ 1

2

, y
)
dy + a1

∫
Jj

{w}(θ1,y)
i− 1

2
,y
v
(
x+
i− 1

2

, y
)
dy

−a2

∫
Ii

{w}(x,θ2)
x,j+ 1

2

v
(
x, y−

j+ 1
2

)
dx+ a2

∫
Ii

{w}(x,θ2)
x,j− 1

2

v
(
x, y+

j− 1
2

)
dx

)
.

(3.47)

Here w, v ∈ Vh and a1 and a2 are some constants that can be chosen in the analysis.
However, note that for v ∈ Qk(Kij), we may have vx, vy ̸∈ Qk−1(Kij). Hence the term∫
Kij

w (a1vx + a2vy) dxdy in (3.47) may not be directly constructed from (3.45a). This hin-

ders the analysis of the 2D GGR projection on Cartesian meshes by the energy approach.
Further investigation is needed to overcome this difficulty.

3.4.2 P k elements

In [24], Liu et al. proved the optimal error estimates of the upwind DG method with P k

elements for the linear advection equation on 2D Cartesian meshes. The main ingredient of
the proof is to construct the special local projection [24, Lemma 2.1]. However, there seems
to be very limited results on extending their optimal error estimates to the upwind-biased
case, and the exact form of the required projection may not even be clear. A tentative
attempt is to generalize the local projection [24, Lemma 2.1] as∫

Kij

(Πθ1,θ2u) dxdy =

∫
Kij

udxdy, (3.48a)

Lij(Πθ1,θ2u, v) =Lij(u, v), ∀v ∈ Pk(Kij), (3.48b)

where

Lij (w, v) =

∫
Kij

w (vx + vy) dxdy −
∫
Jj

{w}(θ1,y)
i+ 1

2
,y

(
v
(
x−
i+ 1

2

, y
)
− v

(
x+
i− 1

2

, y
))

dy

−
∫
Ii

{w}(x,θ2)
x,j+ 1

2

(
v
(
x, y−

j+ 1
2

)
dx− v

(
x, y+

j− 1
2

))
dx,

(3.49)

and {w}(θ1,y)i+1/2,y and {w}(x,θ2)x,j+1/2 are defined in (3.46a) and (3.46b), respectively. When θ1 =

θ2 = 1, this retrieves the local projection in [24, Lemma 2.1].
The structure of the projection (3.48) is very different from those of Lemmas 2.1 and 3.4,

and it is not easy to derive the bilinear form (3.47) from (3.48). Although the projection
(3.48) naturally induces the bilinear form L (w, v) =

∑
ij Lij (w, v), it seems to be difficult to

use L(δ, δ) to control [δ], and L(δ, δ) may not be used in replace of the bilinear form H(δ, δ)
in (3.47).
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4 Numerical Tests

4.1 1D Tests

The detailed numerical verification of Theorem 2.2 can be found in [26]. In this section,
we examine Theorem 2.3 and test the 1D upwind-biased DG methods using polynomials of
degrees k = 1, 2 and θ = 1/2 + hω with various values of ω .

Example 4.1. In this test, we solve (2.1) with the initial condition u(x, 0) = sinx on the
domain Ω = (0, 2π) coupled with the periodic boundary condition. The exact solution is
u(x, t) = sin(x− t). The second-order Runge–Kutta method is used for the k = 1 case and
the third-order Runge–Kutta method is used for the k = 2 case. We set ∆t = 0.05h and use
very fine spatial meshes for a clean convergence rate. ω is set as 0.5, 0.75, 1, 2. We have also
tested other values of ω, but the results are very similar and are hence omitted.

In Table 4.1, uniform meshes with N cells are used for computation. In Table 4.2, the
meshes are nonuniform and the cell length alternates between h = 2π/N · 4/3 and h/2.
Except for P 2 elements on uniform mesh, for which the optimal third-order convergence rate
is observed [25], we observe the (k + max(1 − ω, 0))th order convergence rate in all other
cases, which matches the results in Theorem 2.3.

ω = 0.5 ω = 0.75 ω = 1 ω = 2
N L2 error Order L2 error Order L2 error Order L2 error Order

P 1

640 4.068E-05 - 1.263E-04 - 2.864E-04 - 4.883E-04 -
1280 1.439E-05 1.50 5.388E-05 1.23 1.435E-04 1.00 2.456E-04 0.99
2560 5.093E-06 1.50 2.284E-05 1.24 7.181E-05 1.00 1.231E-04 1.00
5120 1.803E-06 1.50 9.643E-06 1.24 3.593E-05 1.00 6.162E-05 1.00

P 2

640 4.765E-09 - 4.725E-09 - 4.739E-09 - 4.756E-09 -
1280 5.915E-10 3.01 5.923E-10 3.00 5.943E-10 3.00 5.946E-10 3.00
2560 7.382E-11 3.00 7.413E-11 3.00 7.430E-11 3.00 7.434E-11 3.00
5120 9.232E-12 3.00 9.275E-12 3.00 9.289E-12 3.00 9.292E-12 3.00

Table 4.1: The L2 error and the convergence order of upwind-biased DG methods on 1D
uniform mesh with N mesh cells. θ = 1/2 + hω.

4.2 2D Tests

In this section, we test the 2D upwind-biased DG methods with polynomials of degrees
k = 1, 2 and various of parameters θ = 0.75 (under-upwinding), θ = 1 (upwinding), and θ = 2
(over-upwinding). The spatial domain is set as Ω = [0, 1] × [0, 1]. For periodic boundary
conditions, we use the fourth-order Runge–Kutta method for time-marching. The resulted
fully discrete scheme is stable under the usual CFL condition ∆t ≤ Ch [33, 34, 39]. For
the inflow boundary condition, the fourth-order Lax–Wendroff method is adopted for time
discretization to avoid the possible order reduction due to the inflow boundary condition
[17].

22

22            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

ω = 0.5 ω = 0.75 ω = 1 ω = 2
N L2 error Order L2 error Order L2 error Order L2 error Order

P 1

5120 2.462E-06 - 1.442E-05 - 4.719E-05 - 6.852E-05 -
10240 8.706E-07 1.50 6.098E-06 1.24 2.360E-05 1.00 3.427E-05 1.00
20480 3.079E-07 1.50 2.571E-06 1.25 1.180E-05 1.00 1.714E-05 1.00
40960 1.089E-07 1.50 1.080E-06 1.25 5.886E-06 1.00 8.551E-06 1.00

P 2

640 3.936E-08 - 1.322E-07 - 3.419E-07 - 6.147E-07 -
1280 6.836E-09 2.53 2.799E-08 2.24 8.571E-08 2.00 1.546E-07 1.99
2560 1.200E-09 2.51 5.911E-09 2.24 2.146E-08 2.00 3.876E-08 2.00
5120 2.115E-10 2.50 1.244E-09 2.25 5.360E-09 2.00 9.689E-09 2.00

Table 4.2: The L2 error and the convergence order of upwind-biased DG methods on nonuni-
form meshes in 1D with the cell length alternating between h = 2π/N · 4/3 and h/2.
θ = 1/2 + hω.

Example 4.2. We consider the linear advection equation with βββ = (1, 1)T . The initial
condition is set as u(x, y, 0) = sin(2π(x + y)). We consider both the periodic boundary
condition and the inflow boundary condition. For both cases, the exact solution is given by
u(x, y, t) = sin(2π(x + y − 2t)) and the final time is set as T = 0.2. We take ∆t = 0.01/N
to reduce the temporal error, although a larger time step size can be used in practice.

We use structured triangular meshes in this numerical example. These meshes are gener-
ated by splitting the uniform Cartesian meshes by connecting the lower-left and the upper-
right nodes in each square. See Figure 4.1(a). This uniform mesh satisfies the presumed flow
condition with respect to βββ = (1, 1)T . The numerical results with the periodic and inflow
boundary conditions are given in Tables 4.3 and 4.4, respectively. The optimal convergence
rates are observed, as that has been proved in Theorem 3.5.

(a) Structured mesh. (b) Unstructured mesh.

Figure 4.1: Meshes for the accuracy test in Examples 4.2 and 4.3 with N = 10.

Example 4.3. In this numerical test, we repeat Example 4.2 on unstructured meshes, which
are generated with Netgen [29] by specifying the mesh parameters. For example, the mesh
with the maximal mesh size 1/N = 1/10 admitting the periodic boundary condition is
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θ = 0.75 θ = 1 θ = 2
N L2 error Order L2 error Order L2 error Order

P 1

10 4.819e-02 - 3.820e-02 - 3.592e-02 -
20 1.152e-02 2.06 9.439e-03 2.02 8.243e-03 2.12
40 2.802e-03 2.04 2.349e-03 2.01 2.023e-03 2.03
80 6.945e-04 2.01 5.864e-04 2.00 5.036e-04 2.01

P 2

10 3.854e-03 - 3.333e-03 - 5.982e-03 -
20 4.615e-04 3.06 4.256e-04 2.97 9.441e-04 2.66
40 5.654e-05 3.03 5.331e-05 3.00 1.312e-04 2.85
80 7.039e-06 3.01 6.670e-06 3.00 1.714e-05 2.94

Table 4.3: The L2 error and the convergence order of upwind-biased DG methods on struc-
tured meshes using periodic boundary conditions. The mesh is generated by subdividing a
square mesh with N ×N elements.

θ = 0.75 θ = 1 θ = 2
N L2 error Order L2 error Order L2 error Order

P 1

10 4.717e-02 - 3.847e-02 - 3.774e-02 -
20 1.150e-02 2.04 9.485e-03 2.02 8.420e-03 2.16
40 2.802e-03 2.04 2.353e-03 2.01 2.044e-03 2.04
80 6.945e-04 2.01 5.867e-04 2.00 5.061e-04 2.01

P 2

10 3.784e-03 - 3.351e-03 - 5.514e-03 -
20 4.568e-04 3.05 4.246e-04 2.98 8.637e-04 2.67
40 5.608e-05 3.03 5.318e-05 3.00 1.214e-04 2.83
80 6.979e-06 3.01 6.654e-06 3.00 1.597e-05 2.93

Table 4.4: The L2 error and the convergence order of upwind-biased DG methods on struc-
tured meshes using inflow boundary conditions. The mesh is generated by subdividing a
square mesh with N ×N elements.

depicted in Figure 4.1(b). Although the meshes do not satisfy the flow condition, we still
observe optimal convergence rates. See Tables 4.5 and 4.6.

We have also used the meshes to test the upwind-biased DG methods with θ = 1/2 +
(1/N)ω and ω = 0.25, 0.5, 0.75, 1, 2 using P 1 elements. The results are documented in Table
4.7. Degenerated convergence rates are observed as those in the 1D case. By comparing
Tables 4.5 and 4.7, it is clear that the degeneracy should be attributed to the vanishing
values of θ − 1/2.

Example 4.4. This example is modified from the numerical test in [9]. We consider the
linear advection equation with βββ = (1, 0)T . The periodic boundary condition is imposed at
x = 0 and x = 1. Again, we take the initial data to be u(x, y, 0) = sin(2π(x + y)) and the
corresponding exact solution is u(x, y, t) = sin(2π(x+ y − t)). We compute to T = 0.2 with
the time step size ∆t = 0.01/Ny, where Ny is the number of horizontal strips in the mesh
partition.

To construct the spatial mesh, we start with a uniform mesh of size 1/Ny in Figure 4.2(a).
Then we perturb the interior nodes randomly by at most 2/(5Ny) along the x direction. See
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θ = 0.75 θ = 1 θ = 2
N L2 error Order L2 error Order L2 error Order

P 1

10 2.577e-02 - 1.892e-02 - 1.800e-02 -
20 6.527e-03 1.98 4.508e-03 2.07 3.984e-03 2.18
40 1.690e-03 1.95 1.143e-03 1.98 9.991e-04 2.00
80 4.200e-04 2.01 2.813e-04 2.02 2.452e-04 2.03

P 2

10 1.274e-03 - 1.236e-03 - 1.830e-03 -
20 1.401e-04 3.18 1.417e-04 3.12 2.219e-04 3.04
40 1.868e-05 2.91 1.909e-05 2.89 3.014e-05 2.88
80 2.275e-06 3.04 2.346e-06 3.02 3.734e-06 3.01

Table 4.5: The L2 error and the convergence order of upwind-biased DG methods on un-
structured meshes with the mesh parameter 1/N using periodic boundary conditions.

θ = 0.75 θ = 1 θ = 2
N L2 error Order L2 error Order L2 error Order

P 1

10 2.341e-02 - 1.742e-02 - 1.592e-02 -
20 6.234e-03 1.91 4.375e-03 1.99 3.849e-03 2.05
40 1.643e-03 1.92 1.118e-03 1.97 9.679e-04 1.99
80 4.183e-04 1.97 2.808e-04 1.99 2.428e-04 2.00

P 2

10 1.103e-03 - 1.088e-03 - 1.643e-03 -
20 1.321e-04 3.06 1.351e-04 3.01 2.086e-04 2.98
40 1.743e-05 2.92 1.807e-05 2.90 2.848e-05 2.87
80 2.177e-06 3.00 2.262e-06 3.00 3.595e-06 2.99

Table 4.6: The L2 error and the convergence order of upwind-biased DG methods on un-
structured meshes with the mesh parameter 1/N using inflow boundary conditions.

ω = 0.25 ω = 0.5 ω = 0.75 ω = 1 ω = 2
N L2 error Order L2 error Order L2 error Order L2 error Order L2 error Order
10 1.841e-02 - 2.260e-02 - 3.193e-02 - 4.534e-02 - 8.807e-02 -
20 4.596e-03 2.00 7.087e-03 1.67 1.264e-02 1.34 2.033e-02 1.16 3.880e-02 1.18
40 1.255e-03 1.87 2.507e-03 1.50 5.458e-03 1.21 9.801e-03 1.05 1.857e-02 1.06
80 3.411e-04 1.88 8.760e-04 1.52 2.302e-03 1.25 4.775e-03 1.04 9.222e-03 1.01
160 9.948e-05 1.78 3.299e-04 1.41 1.056e-03 1.12 2.491e-03 0.94 4.625e-03 1.00
320 2.827e-05 1.82 1.149e-04 1.52 4.353e-04 1.28 1.171e-03 1.09 2.210e-03 1.07

Table 4.7: The L2 error and the convergence order of upwind-biased DG methods with P 1

elements on unstructured meshes with the mesh parameter 1/N using periodic boundary
conditions. θ = 1/2 + (1/N)ω.

Figure 4.2(b). The resulting mesh is no longer uniform but still satisfies the flow condition
with respect to βββ = (1, 0)T . The numerical results are given in Table 4.8. We observe the
optimal convergence rates for all cases, as that has been proved in Theorem 3.5.

Example 4.5. This example is modified from the numerical test in [27], which showed that
the convergence rate of k + 1/2 is sharp for the upwind DG method for linear transport

25

25            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

(a) Uniform unperturbed mesh. (b) Nonuniform perturbed mesh.

Figure 4.2: Meshes satisfying the flow condition with respect to βββ = (1, 0)T : Uniform mesh
with Ny = 10 and its nonuniform perturbation. Figure 4.2(b) is used for the accuracy test
in Example 4.4.

θ = 0.75 θ = 1 θ = 2
Ny L2 error Order L2 error Order L2 error Order

P 1

10 4.534e-02 - 4.263e-02 - 4.863e-02 -
20 1.141e-02 1.99 1.073e-02 1.99 1.235e-02 1.98
40 2.935e-03 1.96 2.743e-03 1.97 3.203e-03 1.95
80 7.367e-04 1.99 6.856e-04 2.00 8.031e-04 2.00

P 2

10 3.990e-03 - 3.969e-03 - 5.100e-03 -
20 5.683e-04 2.81 5.722e-04 2.79 7.575e-04 2.75
40 7.127e-05 3.00 7.204e-05 2.99 9.814e-05 2.95
80 9.011e-06 2.98 9.112e-06 2.98 1.250e-05 2.97

Table 4.8: The L2 error and the convergence order of Example 4.4 with meshes having a
similar structure in Figure 4.2(b).

over generic triangular meshes. We consider the linear advection equation with βββ = (0, 1)T .
The periodic boundary condition is imposed at y = 0 and y = 1. As before, the initial
data is set as u(x, y, 0) = sin(2π(x+ y)) and the corresponding exact solution is u(x, y, t) =
sin(2π(x+ y − t)). We compute to T = 0.2 with ∆t = 0.05/Ny.

To construct the spatial mesh, we start with a uniform mesh of size 1/Ny in Figure 4.3(a).
Then we add vertical edges to divide the mesh into m vertical strips. When m = O(h−0.75),
the reduced convergence rate of k + 1/2 is observed with this mesh for the test problem in
[27]. The numerical test is given in Table 4.9. We also observe an order degeneration in
the convergence rates. This does not contradict our analysis since the flow condition is not
satisfied for this set of meshes.
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(a) Undivided mesh. (b) Divided mesh with m = 3.

Figure 4.3: Mesh structure for the accuracy test in Example 4.5 with Ny = 12: Undivided
mesh and divided mesh with m = 3.

θ = 0.75 θ = 1 θ = 2
Ny m L2 error Order L2 error Order L2 error Order

P 1

32 8 8.713e-03 - 7.336e-03 - 6.108e-03 -
128 21 1.047e-03 1.53 7.840e-04 1.61 5.028e-04 1.80
512 64 1.433e-04 1.43 1.024e-04 1.47 5.724e-05 1.57

P 2

32 8 1.608e-04 - 1.906e-04 - 3.134e-04 -
128 21 3.446e-06 2.77 4.346e-06 2.73 7.877e-06 2.66
512 64 9.958e-08 2.56 1.265e-07 2.55 2.197e-07 2.58

Table 4.9: The L2 error and the convergence order of Example 4.5 using meshes with a
similar structure as that in Figure 4.3(b).

5 Conclusions

In this paper, we study the global projection operators using the energy approach devel-
oped in [36]. Firstly, we revisit the 1D GGR projection along with optimal error estimates
of the upwind-biased DG method for the 1D linear advection equation. In particular, an
energy approach is proposed to prove the well-definedness and the approximation property
of the 1D GGR projection. Then we extend the argument to multidimensions, which leads
to a novel global projection operator on 2D and 3D simplex meshes satisfying the so-called
flow condition. This global projection generalizes the local projection in [9] and is used to
prove the optimal error estimates of the upwind-biased DG methods for linear advection on
these special meshes.
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A Proof of Lemma 2.8

Before starting, we first state the following proposition, which can be deduced from
Proposition 2.5 through symmetry.

Proposition A.1. Proposition 2.5 holds after replacing (2.34b) with Z+
j−1/2 = z.

The rest of the section is dedicated to the proof of Lemma 2.8.

Proof of Lemma 2.8. By default, we have 1 ≤ j ≤ N within the proof. From Propositions
2.5 and A.1, it can be seen that the following local projection is well-defined

(Πu, v)Ij = (u, v)Ij , ∀v ∈ Pk−1(Ij), ∀j = 1, · · · , N, (A.1a)

(Πu)−
j+ 1

2

= u−
j+ 1

2

, if θj >
1

2
, (A.1b)

(Πu)+
j− 1

2

= u+
j− 1

2

, if θj <
1

2
. (A.1c)

Indeed, it can be equivalently written as

Πu =

{
Π1u, if θj >

1
2
,

Π0u, if θj <
1
2
.

(A.2)

Here Π1 and Π0 correspond to (2.48) with θ ≡ 1 and θ ≡ 0, respectively. All three projections,
Π1, Π0 and Π, satisfy (2.49) with Cθ = C independent of µ∗ and µ∗.

We denote by δ = (Πθ − Π)u. Subtracting (A.1) from (2.48), one can see that the
difference δ satisfies the following equations.

(δ, v)Ij = 0, v ∈ Pk−1(Ij), ∀j = 1, · · · , N, (A.3a)

{δ}(θj)
j+ 1

2

= η̄j+ 1
2
, if θj >

1

2
, (A.3b)

{δ}(θj)
j− 1

2

= ζ̄j− 1
2
, if θj <

1

2
. (A.3c)

Here η̄j+1/2 = {u−Π1u}
(θj)

j+1/2 and ζ̄j−1/2 = {u−Π0u}
(θj)

j−1/2. Using the same argument as that

in the proof of Lemma 2.1, it suffices to show the solution to (A.3) satisfies

∥δ∥L2(Th) + h
1
2∥δ∥L2(E+

h )
≤ Ĉθh

1
2

(
∥η̄∥L2(E+

h )
+ ∥ζ̄∥L2(E+

h )

)
(A.4)

with
Ĉθ = C

(
1 + (µ∗ + 1/2)µ−1

∗
) (

1 + (µ∗ + 1/2)µ−1/2
∗

)
(A.5)

to complete the proof. We now proceed to prove (A.4).
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To facilitate the discussion, we introduce the index sets

J−,+ =

{
j : θj <

1

2
< θj+1

}
, J+,− =

{
j : θj >

1

2
> θj+1

}
; (A.6a)

J−,− =

{
j : θj <

1

2
, θj+1 <

1

2

}
, J+,+ =

{
j : θj >

1

2
, θj+1 >

1

2

}
, (A.6b)

and E−,+
h , E+,−

h , E−,−
h and E+,+

h for corresponding sets of {xj+1/2}. It can be seen that we
are imposing one condition on E−,−

h and E+,+
h , two conditions on E+,−

h , and no condition on
E−,+
h , for each mesh point.
Step 1: Estimate of ∥δ∥L2(E+,−

h ). Note that for xj+ 1
2
∈ E+,−

h , we have

θjδ
−
j+ 1

2

+ θ̃jδ
+
j+ 1

2

= η̄j+ 1
2
, (A.7a)

θj+1δ
−
j+ 1

2

+ θ̃j+1δ
+
j+ 1

2

= ζ̄j+ 1
2
. (A.7b)

Since θ ̸= θ̃, we can solve the equation system (A.7) to get

δ−
j+ 1

2

=
θ̃j+1η̄j+ 1

2
− θ̃j ζ̄j+ 1

2

θ̃j+1 − θ̃j
and δ+

j+ 1
2

=
θj+1η̄j+ 1

2
− θj ζ̄j+ 1

2

θj+1 − θj
. (A.8)

Recall our assumption 0 < µ∗ ≤ |θj − 1/2| ≤ µ∗ < +∞ and let us define

κ =

(
µ∗ +

1

2

)
µ−1
∗ . (A.9)

Then it can be estimated that

∥δ∥L2(E+,−
h ) ≤ Cκ

(
∥η̄∥L2(E+,−

h ) + ∥ζ̄∥L2(E+,−
h )

)
. (A.10)

Step 2: Estimate of ∥δ∥L2(E−,+
h ) and ∥ [δ] ∥L2(E+,+

h ∪E−,−
h ). From (A.3a), it can be seen that

0 =
∑

j:θj>
1
2

(δ, δx)Ij −
∑

j:θj<
1
2

(δ, δx)Ij

=
1

2

∑
j:θj>

1
2

(∣∣∣δ−
j+ 1

2

∣∣∣2 − ∣∣∣δ+
j− 1

2

∣∣∣2)− 1

2

∑
j:θj<

1
2

(∣∣∣δ−
j+ 1

2

∣∣∣2 − ∣∣∣δ+
j− 1

2

∣∣∣2)

=
1

2

∑
j∈J+,+

(∣∣∣δ−
j+ 1

2

∣∣∣2 − ∣∣∣δ+
j+ 1

2

∣∣∣2)− 1

2

∑
j∈J−,−

(∣∣∣δ−
j+ 1

2

∣∣∣2 − ∣∣∣δ+
j+ 1

2

∣∣∣2)
− 1

2

∑
j∈J−,+

(∣∣∣δ−
j+ 1

2

∣∣∣2 + ∣∣∣δ+
j+ 1

2

∣∣∣2)+
1

2

∑
j∈J+,−

(∣∣∣δ−
j+ 1

2

∣∣∣2 + ∣∣∣δ+
j+ 1

2

∣∣∣2)
=−

∑
j∈J+,+

{δ}(1/2)
j+ 1

2

[δ]j+ 1
2
+
∑

j∈J−,−

{δ}(1/2)
j+ 1

2

[δ]j+ 1
2
− ∥δ∥2

L2(E−,+
h ) + ∥δ∥2

L2(E+,−
h ).

(A.11)
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Here we have used the identity |δ+|2 − |δ−|2 = 2{δ}(1/2) [δ]. With (A.3b) and (A.3c), it can
be shown that∑

j∈J+,+

{δ}(θj)
j+ 1

2

[δ]j+ 1
2
−
∑

j∈J−,−

{δ}(θj)
j+ 1

2

[δ]j+ 1
2
=
∑

j∈J+,+

η̄j+ 1
2
[δ]j+ 1

2
−
∑

j∈J−,−

ζ̄j+ 1
2
[δ]j+ 1

2
. (A.12)

Note that {δ}(θj)
j+ 1

2

= {δ}(1/2)
j+ 1

2

− (θj − 1/2) [δ]j+ 1
2
. Combining (A.11) and (A.12) yields

∑
j∈J+,+∪J−,−

∣∣∣∣θj − 1

2

∣∣∣∣ [δ]2j+ 1
2
+ ∥δ∥2

L2(E−,+
h ) − ∥δ∥2

L2(E+,−
h ) =

∑
j∈J−,−

ζ̄j+ 1
2
[δ]j+ 1

2
−
∑

j∈J+,+

η̄j+ 1
2
[δ]j+ 1

2

(A.13)
Using the assumption |θj − 1/2| ≥ µ∗ and the Cauchy–Schwartz inequality on the right side,
we can obtain

µ∗∥ [δ] ∥2L2(E+,+
h ∪E−,−

h ) + ∥δ∥2
L2(E−,+

h ) − ∥δ∥2
L2(E+,−

h )

≤ ∥η̄∥L2(E+,+
h )∥ [δ] ∥L2(E+,+

h ) + ∥ζ̄∥L2(E−,−
h )∥ [δ] ∥L2(E−,−

h ).
(A.14)

Using the inequality ab ≤ (a2 + b2) /2 on the right side, we can simplify the inequality as

µ∗

2
∥ [δ] ∥2

L2(E+,+
h ∪E−,−

h ) + ∥δ∥2
L2(E−,+

h ) ≤ (2µ∗)
−1
(
∥η̄∥2

L2(E+,+
h ) + ∥ζ̄∥2

L2(E−,−
h )

)
+ ∥δ∥2

L2(E+,−
h ).

(A.15)
Taking the square root and using the inequality (|a|+ |b|)/

√
2 ≤

√
a2 + b2 ≤ |a|+ |b| yield

µ
1
2
∗ ∥ [δ] ∥L2(E+,+

h ∪E−,−
h ) + ∥δ∥L2(E−,+

h ) ≤ Cµ
− 1

2
∗

(
∥η̄∥L2(E+,+

h ) + ∥ζ̄∥L2(E−,−
h )

)
+ C∥δ∥L2(E+,−

h ).

(A.16)

Note that (µ∗)
− 1

2 ≤ 1/2 + 1/(2µ∗) ≤ C (1 + κ). Combining with (A.10), it can be shown
that

µ
1
2
∗ ∥ [δ] ∥L2(E+,+

h ∪E−,−
h ) + ∥δ∥L2(E−,+

h )

≤ C(1 + κ)
(
∥η̄∥L2(E+,+

h ∪E+,−
h ) + ∥ζ̄∥L2(E−,−

h ∪E+,−
h )

)
≤ C(1 + κ)

(
∥η̄∥L2(E+

h )
+ ∥ζ̄∥L2(E+

h )

)
.

(A.17)

Step 3: Estimate of ∥δ∥L2(E+
h )
. From (A.3b) and (A.3c), we have

δ−
j+ 1

2

= η̄j+ 1
2
− θ̃j [δ]j+ 1

2
, ∀j ∈ E+,+

h . (A.18a)

δ+
j+ 1

2

= ζ̄j+ 1
2
+ θj [δ]j+ 1

2
, ∀j ∈ E−,−

h . (A.18b)

With the triangle inequality, the estimate (A.17), and the fact |θj|, |θ̃j| ≤ µ∗ + 1/2 = κµ∗, it
can be seen that

∥δ∥L2(E+,+
h ∪E−,−

h ) ≤
(
1 + C(1 + κ)κµ

1
2
∗

)(
∥η̄∥L2(E+

h )
+ ∥ζ̄∥L2(E+

h )

)
. (A.19)

Therefore, with (A.10), (A.17), and (A.19), we have

∥δ∥L2(E+
h )

≤
(
1 + C(1 + κ)

(
1 + κµ

1
2
∗

))(
∥η̄∥L2(E+

h )
+ ∥ζ̄∥L2(E+

h )

)
≤ Ĉθ

(
∥η̄∥L2(E+

h )
+ ∥ζ̄∥L2(E+

h )

)
.

(A.20)
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Step 4: Estimate of ∥δ∥L2(Th). We can deduce from Propositions 2.5 and A.1 that

∥δ∥L2(Ij) ≤ Ch
1
2
j

∣∣∣δ−
j+ 1

2

∣∣∣ , ∀j : θj >
1

2
. (A.21a)

∥δ∥L2(Ij) ≤ Ch
1
2
j

∣∣∣δ+
j− 1

2

∣∣∣ , ∀j : θj <
1

2
. (A.21b)

Taking the square and summing over all mesh cells yields

∥δ∥2L2(Th) =
N∑
j=1

∥δ∥2L2(Ij)
≤ Ch∥δ∥2

L2(E+
h )
. (A.22)

Apply the estimate in (A.20) and take the square root. One can obtain

∥δ∥L2(Th) ≤ Ĉθh
1
2

(
∥η̄∥L2(E+

h )
+ ∥ζ̄∥L2(E+

h )

)
. (A.23)

Finally, the estimate (A.4) can be obtained by combining (A.20) and (A.23).

B Proof of Lemma 3.2

Proof. Two-dimensional case: It is known that the shape-regularity condition (3.2) is equiv-
alent to the following minimal angle condition in 2D (also known as the Zlámal’s condition
[8, Exercise 3.1.3]):

There exists a constant α0 > 0, such that αK ≥ α0 for all K ∈ Th, (B.1)

where αK is the minimum angle of K.

A B

C

O

βββ

E A B

C

O

βββ

E

Figure B.4: Triangular elements for the proof of Lemma 3.2 in 2D.

Now we consider the triangular elements K = △ABC in Figure B.4. Let e+K = AB be
the outflow edge. Suppose βββ starts at C. Due to the flow condition (3.3a), we must have the
extension of βββ intersect the line segment AB at some point E. Furthermore, we set O to be
the foot of the altitude from C to AB. Then we will have either |OA| ≥ |OE| or |OB| ≥ |OE|.
Without loss of generality, we assume |OA| ≥ |OE|, which implies ∠OCE ≤ ∠OCA. As a
result, we have

βββ · nnne+K
= |βββ| cos∠OCE ≥ |βββ| cos∠OCA = |βββ| sin∠OAC ≥ |βββ| sinα0 > 0. (B.2)
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Here we have used the Zlámal’s condition (B.1). Hence the transversality condition (3.4)
holds with γ = sinα0.

Three-dimensional case: In 3D, it is proven in [3] that the shape-regularity condition
(3.2) is equivalent to the following minimal angle condition.

There exists a constant α0 > 0, such that for any simplex K ∈ Th, any dihedral

angle α, and any solid angle α of K, we have α ≥ α0.
(B.3)

A

D

C

B

O

βββ

EF

G

A

D

C

B

O

βββ

EF

G

Figure B.5: Tetrahedral elements for the proof of Lemma 3.2 in 3D.

Now let us consider the tetrahedrons K = ABCD in Figure B.5. We assume e+K =
△ABC to be the outflow face. Suppose βββ starts at D. Due to the flow condition (3.3a), to
ensure a unique outflow face, we need that the extension of βββ intersect △ABC within the
triangle at some point E. Furthermore, we set O to be the foot of the altitude from D to
△ABC. We connect OE and extend it until it intersects the edge of △ABC at some point
F (so that |OF | ≥ |OE|). Then we must have

cos∠ODE ≥ cos∠ODF = sin∠OFD. (B.4)

Without loss of generality, we assume that F is on the edge AB. Note we have either
|OA| ≥ |OF | or |OB| ≥ |OF |. We only consider the case |OA| ≥ |OF | and the other case
can be proved similarly. When |OA| ≥ |OF |, we have

sin∠OFD ≥ sin∠OAD =
|OD|
|DA|

. (B.5)

Then we set G to be the foot of the altitude from D to AB on △ABD. In can be seen that

|OD|
|DA|

=
|OD|
|DG|

· |DG|
|DA|

= sin∠OGD · sin∠GAD ≥ sin2 α0. (B.6)

Here we have used the fact that ∠OGD is the dihedral angle between the plane ABC and
the plane ABD and ∠GAD is a solid angle in △ABD, which are both greater than or equal
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to α0 according to the minimal angle condition (B.3). Combining (B.4), (B.5), and (B.6),
we get

βββ · nnne+K
= |βββ| cos∠ODE ≥ |βββ| sin2 α0 > 0. (B.7)

Hence the transversality condition (3.4) holds with γ = sin2 α0.

C Dimension count in the proof of Lemma 3.4

Proposition C.1. The finite-dimensional linear system determined by (3.23) is square.

Proof. On each mesh cell K ∈ Th, the degrees of freedom of the unknown δ is dim(Pk(K)),
the number of equations associated with (3.23a) is dim(Pk−1(K)), and the number of equa-
tions associated with (3.23b) is dim(Pk(e

+
K)). Since

dim (Pk(K)) =

(
k + d

d

)
, dim (Pk−1(K)) =

(
k − 1 + d

d

)
, dim

(
Pk

(
e+K
))

=

(
k + d− 1

d− 1

)
,

(C.8)
and (

k + d

d

)
=

(
k − 1 + d

d

)
+

(
k + d− 1

d− 1

)
, (C.9)

we know that dim(Pk(K)) = dim(Pk−1(K))+dim(Pk(e
+
K)) — the degrees of freedom equals

to the number of equations on each mesh cell. As a result, the global system (3.23) is square
with |Th|

(
k+d
d

)
unknowns, where |Th| is the number of mesh cells.
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